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those given in the first paper, because the two types of 
transmission geometry become identical at zero scat- 
tering angle. 

Discussion 

The portions of the discussion in the first paper of this 
series that apply for transmission geometry also apply 
to the present case. 

The type of transmission geometry described in this 
paper can often be used by only slight modification of 
a reflection geometry diffractometer. The sample 
holder is rotated by 90 ° so that the surface of the 
sample is normal to the incident X-ray beam at zero 
scattering angle. The slits of the diffractometer may 
have to be changed in some cases. 

A comparison of the three forms of geometry con- 
sidered in this and the first paper of the series is inter- 
esting. For very large scattering angles, reflection 
geometry often is superior from the standpoints of 
secondary scattering, primary scattering, and the 
magnitude of the absorption correction. For inter- 
mediate scattering angles, the type of transmission 
geometry described in this paper and reflection geom- 
etry often are both satisfactory. At small scattering 
angles, either type of transmission geometry is usually 
superior to reflection geometry. At extremely small 
angles, the usual transmission geometry described in 
the first paper is superior, because fewer moving parts 
are required in the diffractometer. 

If a sample cannot be made thin enough to yield a 
small calculated ratio of secondary-to-primary inten- 
sity, the calculated secondary intensity can be used to 
obtain an approximation of primary coherent intensity, 
using the normalization procedure described in the 
first paper. An improved value of secondary intensity 
can then be calculated using the approximate coherent 
experimental intensity. However, this procedure would 
require a very large amount of work. Very careful de- 
sign of the scattering experiment will usually allow 
such problems to be avoided. 

/zi{m) 

Nomenclature 

Aj Atomic weight of element j. 
b,q Parameters used to approximate scattering in 

J =  [~Z~] [q+(1-q)/(1 +b sin 2 0)]. 
c Velocity of light. 
e Electronic charge. 
/1 Total intensity of primary scattering. 
l 2 Total intensity of secondary scattering. 
J Intensity of primary scattering in electron units. 
m Rest mass of electron. 
N Avogadro's number. 
r Vector from first to second scattering point in 

the case of secondary scattering. 
t Sample thickness. 
V1 Volume of sample illuminated by incident X- 

ray beam. 
Zj Atomic number of element j. 
20 Total scattering angle for primary scattering. 
/z Linear absorption coefficient at the wavelength 

of incident radiation. 
/z' Linear absorption coefficient at the wavelength 

of incoherent radiation as a function of scat- 
tering angle. 
Mass absorption coefficient of element j. 

APPENDIX 

Normalization can be done in the same manner as des- 
cribed in the appendix of the first paper of this series, 
if the expressions for ~2  and ~-3 are used as given 
below. 

~ ' z=[p t  exp ( - p t  see 0)]/[cos 0 E Ajpj{m}] 

/z[exp (-Izt sec 0 ) - e x p  ( - f i t  sec 0)] [v'] z 
[/z'-/z] ~ Aj#j{m} W] 
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Application of Constraints to Derivatives in Least-Squares Refinement 
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The effect of imposing constraints on the parameters of a least-squares refinement is considered, and a 
general equation is presented that relates the derivatives for the calculated, unconstrained parameters to 
those of the constrained parameters. 

A problem which is frequently encountered in the 
least-squares refinement of positional and thermal par- 
ameters for crystal-structure analyses is the imposition 

of constraints to account for the interdependence of 
such parameters. The constraints usually arise from the 
imposition of known symmetry or geometry for parts 

A C 2 8 A  - 5*  



164 DERIVATIVES IN LEAST-SQUARES R E F I N E M E N T  

of the structure, or from a proper treatment of the 
refinement in structures that exhibit disorder. 

The constraints which are imposed on the positional 
and thermal parameters of an atom which lies at a 
point of crystallographic site symmetry are well-known 
and routinely applied (Levy, 1956). More recently, the 
solution of large structures which contain molecular 
fragments of known geometry has led to rigid-group 
refinement procedures (Scheringer, 1963; La Placa & 
Ibers, 1965), in which a geometry for part of the struc- 
ture, such as a phenyl ring, is assumed to be known to a 
higher precision than can be determined in the struc- 
ture being refined. The remaining variable parameters 
for the atoms within the group are only the origin and 
orientation of the group. The effect of a relaxation of 
the rigid-group assumption has recently been considered 
(Strouse, 1970); the constraints in this case arise only 
from an assumed molecular point symmetry for a 
fragment of the molecule. The molecular parameters 
for this fragment, such as bond lengths and angles, are 
free to vary, subject only to the point-symmetry re- 
quirements. Finally, appearance of disorder problems 
has increased with the size and precision of structure 
analyses. The presence of disorder and a known chem- 
ical composition always imply a constraint among 
atomic occupation factors. If assumptions are made 
regarding the geometries of two disordered molecular 
fragments, relative to one another, additional con- 
straints are imposed (Ibers, 1971). 

Each of the above types of constraint has been des- 
cribed in a manner specific to the problem considered. 
We have recently encountered several of these prob- 
lems (Raymond & Wenk, 1971; Goldberg, Duesler & 
Raymond, 1971, 1972; Wenk & Raymond, 1972) 
and solved each in the same general way. All of these 
constraints have the same fundamental mathematical 
form. We present here a brief, but general, derivation 
of the equations which impose the proper constraints 
on the derivatives generated in the least-squares re- 
finement. Only the specific method of application of 
these constraints will vary, depending on the type of 
problem and the particular least-squares program being 
used. 

The fundamental problem lies in the construction of 
the design matrix for the least-squares refinement (Ham- 
ilton, 1964). This matrix is given by DrD, where D~j= 
OFi[Oxj. Here, xj represents thejth variable and F~ is the 
absolute value of the ith calculated structure factor (or 
structure factor squared if the refinement is based on 
that form of the observations); the superscript T re- 
presents the transpose operation. For a nonlinear, 
least-squares refinement with unit weights applied to 
the observations, the shifts in parameters, Ax, are given 
by: Ax= (DrD) -1 DrAF. The imposition of constraints 
lessens the number of independent variables and re- 
quires a suitable combination of the original derivatives 
in constructing a new design matrix for the smaller, 
independent set of variables. 

Assume that there are n variables in the original set x 

(a column vector). Let m be the number of constraints 
imposed upon the variables x. These constraints are 
represented by a set of m equations: 

Then, 
A ( x ) = c l  . . .  A ( x ) =  c,, . . .  f , , (x )  = x , , .  

(ef'(x)) -'x 
df i= j= l  3X-f- a j = 0 ,  

which can be expressed in matrix form as 

(1) 

A d x = 0 ,  (2) 

where A~j=~f~(x)/~xj and 0 is a colurml vector of 
dimension m whose elements are all zero. The m by n 
matrix A summarizes all constraints imposed on the 
problem. 

With m constraints and n original variables there are 
n-m linearly independent variables. Let k=n-m and 
choose k independent variables, v, such that: 

(3) Bx = v and Bdx = d r .  

It will usually be convenient to let v be just the first k 
elements of x, in which case Bij = 0 if i e j  and Bij = 1 
for i=j; however, any other linearly independent set 
of new variables is also legitimate. 

The two matrix equations (2) and (3) can be combined 
to give 

(BA) d x =  (dv) . (4) 

L e t ( B )  =Q,  where 

Q~:=Bi: i<k 
Qtj=Aij  i > k .  

The n by n square matrix, Q, will be nonsingular if 
both the constraints and new variables are linearly 
independent. The reverse transformation then exists: 

Only the linear relation between dx and dv is of present 
interest: 

dx = J dv. 

The n by k matrix, J, is composed of just the first k 
columns of Q - l ;  i.e. J is defined by J~j = Qi31, j < k. 

We assume that the derivatives with respect to the 
original parameters x, dF/dx, have been calculated. 
However, the required derivatives are those for the new 
set of independent variables dF/dv. 
By the chain rule 

Note that 

(6) 

(ex,  
Ovj / = J~J" (7) 
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This immediately gives the final relation between the 
original derivatives and the new, constrained set: 

dF dF 
- a ~ - -  (8)  

dv dx " 

dF dF 
Here, ~ -  and ~ are column vectors. In order to 

illustrate the application of these constraint equations, 
two typical examples follow. 

Example 1 
In an analysis of disorder in lunar minerals (Wenk 

& Raymond, 1972) the following constraints are ap- 
plied to atom occupation factors xl, x2, x3, x4, x 5 and 
x6; x4 = xs, x6 = 2x4, and 

12"2xl + 12"2x2 + 14Xa + 8x4 + 8xs + 8x6 = constant. 

Let vl = xl, V2 : X2, V3 : X3 , 

Let vt = xl, vz = X2 , 

then 

dr1, ( ) lax1, l o o  
= ldx2/, 

aal a32 a33 \ d x a ]  

aat~ 
where /a32~ = 2G ( x -  y). This gives 

\aaa/ 

OF 

. 2  
1 OF 

To summarize, all of the constraint problems which 
arise in least-squares refinement have the same fun- 

then 

and the result 

follows. 

dv, X 1 o g ° 0 0 

d v a |  1"0 
i J  0 0 1"0 -1"0 = -1"0 / | d x 4 ]  [ d x a |  

2"0 0 8"01 ~ d x s l  
\ 1 2 . 2  12.2  14.0 8.0 8.0 \dx6/¢ 

dv Q dx 

0.0 t 
1.0 0.0 0.0 0.0 0.0 
0.0 1.0 0.0 0.0 0.0 0.0 

- - 1  0.0 0-0 1.0 0.0 0.0 0.0 
-0.3812 -0.4375 0.2500 -0.2500 0.0312 = / _ 0 . 3 8 1 2  

~ - 0 . 3 8 1 2  -0.3812 -0.4875 -0.7500 0.2500 0.0312/  
\ - 0 . 7 6 2 5  -0.7625 -0.8750 0.5000 -0.5000 0.0625/  

(OF/Ovl\ (1.0 0.0 0.0 -0.3812 -0.3812 -0.7625\ 
OF/Ov2]= 0.0 1.0 0.0 -0.3812 -0.3812 -0.7625] 
OF/Oval 0.0 0.0 1.0 -0.4375 -0.4375 -0.8750] 

dF/dv j r  

OF/Ox2~ 
OF/Ox4 I 
OF/Ox~] 
OF/Ox6/ 
dF/dx 

Example 2 
In a crystal, a bond length is held constant between 

two atoms whose coordinates are y and x. This con- 
straint is applied to the coordinates of the second atom. 
If G is the metric tensor and b is the bond length 

f(x) = b 2 = (x - y) r G ( x -  y) 

(dl)  T 
df _ 2 G (x-y) ,  df= -dx dx= 0 
dx 

damental structure. The equations which relate the 
derivatives for the constrained parameters are given by 
the matrix equation (8). The equations which have been 
previously given in discussions of particular types of 
constraints are all special forms of this fundamental 
equation. 

The author thanks the National Science Foundation 
for financial support and the Alfred P. Sloan Foun- 
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Debye-Waller B values of NaC1, KC1, MgO and AgCI are calculated from lattice dynamics based on a 
a simple, rigid-ion type, interaction model. The parameters introduced in the model have intelligible 
significance. The present approach compares favourably with experimental evidence and previous 
physical calculations. 

Introduction 

The determination of Debye-Waller B values from 
X-ray and neutron-diffraction data is a problem not 
yet completely solved. Table 1 shows, chronologically, 
experimental room-temperature B values of NaC1. 
Large deviations, even between values determined most 
recently, indicate that these data are probably not the 
final ones. Various problems connected with experiment 
and data analysis have been amply discussed by 
several authors (Abrahams & Bernstein, 1965; Maslen, 
1967; G/Sttlicher, 1968; Linkoaho, 1969). It seems 
that, at this moment, the most serious problem is 
evaluating the thermal diffuse scattering (TDS) con- 
tribution to observed intensities at the Bragg reflex- 
ions. Different authors use different simplified models 
to deduce the magnitude of the TDS corrections. The 
resulting change in average room-temperature NaC1 
Debye-Waller B values ranges from 0.04 to 0.20/k 2 for 
single-crystal measurements and from 0.03 to 0.06 A 2 
for powder measurements, depending on experimental 
set-up and model used for calculations (Nilsson, 1957; 
Pryor, 1966; Suortti, 1967; G/3ttlicher, 1968). 

Theoretical calculations of Debye-Waller B values 
for NaCl-type structures have been made for most of 
the interaction models in current use for lattice dynami- 
cal calculations. In the following, Debye-Waller B values 
of NaC1, KC1, MgO and AgC1 are calculated from 
lattice dynamics employing a simple rigid-ion type 

* Present address: Philips Natuurkundig Laboratorium, 
WAALRE, The Netherlands. 

interaction model. The results compare favourably 
with experimental evidence and previous calculations 
based on more complicated interaction models. 

Interaction model 

The interaction model, used for the present calcula- 
tions, is essentially Kellerman's (1940) rigid-ion model 
but extended with second nearest-neighbour short-range 
interactions. The lattice dynamical calculations have 
been done using the Born von Kdrm~in theory as 
presented by Maradudin, Montroll & Weiss (1963). 

Like other models, the model is semi-empirical in 
in the sense that, lacking sufficient knowledge of inter- 
atomic forces, parameters need to be scaled with the 
aid of experimental information. The interaction is 
assumed to be pair-wise additive and is split into a 
long-range Coulomb part and a short-range part, not 
necessarily repulsive. The parameters of the model are: 

1. The effective electric charge of the ions, se, where 
e is the elementary charge, determining the Coulomb 
interaction. Values of se, required for lattice dynamics, 
are closely comparable with Szigeti's (1950) effective 
charge used in his theory of dielectric constants. 

2. First and second derivatives of the short-range 
pair-potentials, with respect to interionic distance, 
taken at equilibrium separation. Considering only first- 
and second-neighbour short-range interactions, then, 
for NaC1 type structures, one is dealing with three 
different short-range interactions and, thus, six short- 
range parameters. These parameters, or force con- 
stants, are denoted by ~0++, c,0+ +, co;_, ~+_, co-_, (p2_, 
(co+ + being the first derivative of the potential between 


